Bounds for the Appell Function F2
نویسندگان
چکیده
منابع مشابه
The Appell ’ S Function F 2 for Large Values of Its Variables
The second Appell’s hypergeometric function F2(a, b, b ′, c, c′;x, y) has a Mellin convolution integral representation in the region (x + y) < 1 and a > 0. We apply a recently introduced asymptotic method for Mellin convolution integrals to derive three asymptotic expansions of F2(a, b, b ′, c, c′;x, y) in decreasing powers of x and y with x/y bounded. For certain values of the real parameters ...
متن کاملCoefficient bounds for a new class of univalent functions involving Salagean operator and the modified Sigmoid function
We define a new subclass of univalent function based on Salagean differential operator and obtained the initial Taylor coefficients using the techniques of Briot-Bouquet differential subordination in association with the modified sigmoid function. Further we obtain the classical Fekete-Szego inequality results.
متن کاملLimit Theorems for Bivariate Appell
Consider the stationary linear process X t = P 1 u=?1 a(t?u) u , t 2 Z, where f u g is an i.i.d. nite variance sequence. The spectral density of fX t g may diverge at the origin (long-range dependence) or at any other frequency. Consider now the quadratic form Q N = P N t;s=1 b(t ? s)P m;n (X t ; X s), where P n;m (X t ; X s) denotes a non-linear function (Appell polynomial). We provide general...
متن کاملOn rational bounds for the gamma function
In the article, we prove that the double inequality [Formula: see text] holds for all [Formula: see text], we present the best possible constants λ and μ such that [Formula: see text] for all [Formula: see text], and we find the value of [Formula: see text] in the interval [Formula: see text] such that [Formula: see text] for [Formula: see text] and [Formula: see text] for [Formula: see text], ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1993
ISSN: 0022-247X
DOI: 10.1006/jmaa.1993.1074